Nanophotonics Research Group            Last updated on August, 2016   中文版

Benfeng BAI PhD, Associate Professor

Affiliation & postal address:

     Institute of Opto-Electronic Engineering

   Department of Precision Instrument

   Tsinghua University

   Beijing 100084, CHINA

Office: Tsinghua-Foxconn Nanotechnology Research Center, Rm. 213

E-mail: baibenfeng(at)tsinghua.edu.cn

Tel: +86 10 62797530

Date and place of birth:

November 25, 1978; Pingliang, Gansu Province, China

 

Education:

l Postgraduate

2001.9-2006.1, Dept. of Precision Instrument, Tsinghua Univ., Beijing, China

PhD degree in Optical Engineering

Dissertation: Group-theoretic Approach to the Theory of Crossed Gratings and its Application to the Fourier Modal Method

l Undergraduate

1997.92001.7, Dept. of Precision Instrument, Tsinghua Univ., Beijing, China

Bachelor’s degree in Precision Instruments

 

Academic career:

l 2009.11 –

Associate Professor

Dept. of Precision Instrument, Tsinghua University, Beijing, China

l 2006.2 – 2009.11

Post-doctoral researcher

Dept. of Physics and Mathematics, University of Joensuu, Joensuu, Finland

 

Research interests and expertise:

The research area of B. Bai is in Nanophotonics, with the main research topics covering plasmonics, metamaterials, diffraction gratings, etc.

l Plasmonics

     Fundamental physics problems in plasmonics (extraordinary transmission, Fano resonance, the steering and coupling of elementary excitations, etc.)

     Functional plasmonic nanostructures and devices for applications in, e.g., plasmonic circuitry, biosensing, optical detecting, imaging and display

     Precision metrology and scatterometry of nanoparticles

     Near-field optics and instrumentation of multi-parameter SNOM

     Fabrication methods for large-scale, low-cost, replicable, and complicated nanostructures

l Metamaterials and metasurfaces

     Chiral metamaterials with extraordinary optical activity and circular dichroism and their applications (in, e.g., chiral molecule sensing, optical filtering, and polarization conversion)

     Metasurfaces based on nanoantenna arrays and their novel applications (in, e.g., metalens, the generation of vortex beam, and holographic imaging and display)

l Advanced numerical modeling methods for nanophotonics

     Rigorous electromagnetic theory and numerical methods for diffraction gratings (incl. the use of group theory in numerical methods for periodic nanostructures, the Fourier modal method, the C method, etc.)

     Rigorous methods for modeling nonlinear effects (such as SHG) in nanostructures

     Numerical methods for the analysis of polarization and coherence of light field in nanostructures (such as chiral metamaterials)

 

Scientific expert positions:

l Topical Editor of Optics Letters (journal of the Optical Society of America), since 2014.

l Member of the Nanometrology Standardization Working Group of the National Nanotechnology Standardization Committee of China, since 2013.

l Member of the European Optical Society (EOS), since 2006.

l Member of the Network of Excellence in Micro-optics (NEMO), 2006-2009.

l Acting as a referee regularly for physics and optics journals such as the OSA journals (Opt. Lett., Opt. Express, Appl. Opt., J. Opt. Soc. Am. A/B), APS journals (Phys. Rev. series), J. Opt., etc.

 

Scientific merits:

l 50+ refereed SCI papers published in international leading optics and physics journals incl. Nature Commun., Light: Sci. & Appl., Nano Lett., Small, Adv. Opt. Mat., Opt. Lett., Opt. Express, JOSA A/B, Appl. Phys. Lett., Phys. Rev. A/B, etc.

l 30+ patents (in application or authorized) in China, USA, and Taiwan region

l 30+ invited/oral presentations in international conferences.

l 60+ papers/digests in international conference proceedings.

 

Scientific awards and honors:

l 211 Supporting Program for Young Scholars on Fundamental Research, sponsored by Tsinghua University in 2014.

l Jin Guofan Young Scholar Award, awarded by the China Instrument and Control Society in 2011.

l Nomination Award of National Excellent Doctoral Dissertation of China, awarded by the Ministry of Education of China in 2008.

l First-class Award of Excellent Doctoral Dissertation, awarded by Tsinghua University in 2006.

 

 

 

Academic exchange:

l 2015.01 – 2015.02, Visiting scientist at the Department of Physics and Mathematics, University of Eastern Finland, Finland

l 2012.02 – 2012.03, Marie Curie visiting scientist at the Institute of Applied Optics, University of Stuttgart, Germany

l 2011.02 – 2011.03, Visiting scientist at the Department of Physics and Mathematics, University of Eastern Finland, Finland

 

Course teaching:

l Postgraduate course Nanophotonics: Principles and Applications (80130422), 2 credits, full English teaching

l Postgraduate course Applied Physical Optics (80130483), 3 credits, full English teaching

l Undergraduate course Academic English Practice (10130012), 2 credits, full English teaching

l Undergraduate course Nanophotonics (40131312), 2 credits, English-Chinese teaching

 

Language skills:

Chinese (native), English (fluent)

 

Publications (SCI journal papers):

[1]     G. Yang, B. Bai*, W. Liu, and X. Wu, “Fast and simultaneous determination of the number and mass concentrations of gold nanorod colloid using an improved optical extinction-scattering spectroscopic method,” Appl. Spectrosc. 70, 593-603 (2016).

[2]     O. You, B. Bai*, X. Wu, Z. Zhu, and Q. Wang, “A simple method for generating unidirectional surface plasmon polariton beams with arbitrary profiles,” Opt. Lett. 40, 5486-5489 (2015).

[3]     P. Fan, M. Zhong, B. Bai, G. Jin, and H. Zhang, “Tuning the optical reflection property of metal surfaces via micro–nano particle structures fabricated by ultrafast laser,” Appl. Surf. Sci. 359, 7-13 (2015).

[4]     L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27, 6444-6449 (2015).

[5]     P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, “Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface,” Nano Lett. 15, 5988-5994 (2015).

[6]     X. Xiao, B. Bai*, and N. Xu, “Dual-wavelength extinction method for fast sizing of metal nanosphere ensembles,” Appl. Opt. 54, 7160-7168 (2015). [IF 1.784]

[7]     Z. Zhu, B. Bai*, O. You, Q. Li, and S. Fan, “Fano-resonance boosted cascaded field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light: Science & Applications 4, e296 (2015).

[8]     X. Xiao, B. Bai*, N. Xu, and K. Wu, “Adaptive striping watershed segmentation method for processing microscopic images of overlapping irregular-shaped and multi-center particles,” J. Microscopy 258, 6-12 (2014).

[9]     O. You, B. Bai,* and X. Li, “Experimental study of unidirectional excitation of SPPs by binary area-coded nanohole arrays,” Chin. Opt. Lett. 12, 082401 (2014).

[10]  Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: A replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small, 10, 1603-1611 (2014) (2014).

[11]  Z. Zhu, Q. Li, B. Bai, and S. Fan, “Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering,” Nanoscale Res. Lett. 9, 25 (2014).

[12]  L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S.i Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nature Commun. 4, 2808 (2013).

[13]  N. Xu, B. Bai, Q. Tan, and G. Jin, Accurate geometric characterization of gold nanorod ensemble by an inverse extinction/scattering spectroscopic method, Opt. Express 21, 21639-21650 (2013).

[14]  X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, T. Zentgraf, and S. Zhang, Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).

[15]  D. Liu, H. Wang, K. Su, Q. Tan, B. Bai, and T. Shao, Laser induced twin-groove surface texturing based on optical fiber modulation, Laser Phys. 23, 056005 (2013).

[16]  L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Science & Applications 2, e70 (2013).

[17]  N. Xu, B. Bai, Q. Tan, and G. Jin, Fast statistical measurement of aspect ratio distribution of gold nanorod ensembles by optical extinction spectroscopy, Opt. Express 21, 2987-3000 (2013).

[18]  X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nature Commun. 3, 1198 (2012).

[19]  L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750-5755 (2012).

[20]  K. Konishi, B. Bai, Y. Toya, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Surface-plasmon enhanced optical activity in two-dimensional metal chiral networks,” Opt. Lett. 37, 4446-4448 (2012).

[21]  M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20, 16974-16980 (2012).

[22]  B. Bai, K. Ventola, J. Tervo, and Y. Zhang, “Determination of the eigenpolarizations in arbitrary diffraction orders of planar periodic structures under arbitrary incidence,” Phys. Rev. A 85, 053808 (2012).

[23]  X. Li, Q. Tan, B. Bai, and G. Jin, Tunable directional beaming assisted by asymmetrical SPP excitation in a subwavelength metallic double slit, Chin. Opt. Lett. 10, 052401 (2012).

[24]  X. Li, Q. Tan, B. Bai, and G. Jin, Non-spectroscopic refractometric nanosensor based on a tilted slit-groove plasmonic interferometer, Opt. Express 19, 20691-20703 (2011).

[25]  B. Bai, X. Li, I. Vartiainen, A. Lehmuskero, G. Kang, J. Turunen, M. Kuittinen, and P. Vahimaa, “Anomalous complete opaqueness in a sparse array of gold nanoparticle chains,” Appl. Phys. Lett. 99, 081911 (2011).

[26]  G. Kang, I. Vartiainen, B. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011).

[27]  A. Lehmuskero, N. Hakulinen, H. Lajunen, J. Zheng, R. Sha, B. Bai, L. Huang, J. Turunen, P. Vahimaa, and N. C. Seeman, “Linear birefringence magnitude of artificial self-assembled DNA crystals,” Opt. Mater. Express 1, 936-942 (2011).

[28]   X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).

[29]  T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence, Opt. Lett. 36, 2411-2413 (2011).

[30]  G. Kang, I. Vartiainen, B. Bai, P. Pääkkönen, and J. Turunen, Compact middle-wave infrared Fabry-Perot interferometer with double metallic subwavelength gratings, Opt. Lett. 36, 1011-1013 (2011).

[31]  X. Li, L. Huang, Q. Tan, B. Bai, and G. Jin, “Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmon-polariton waveguide,” Opt. Express 19, 6541-6548 (2011).

[32]  G. Kang, I. Vartiainen, B. Bai, and J. Turunen, “Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating,” Opt. Express 19, 770-778 (2011).

[33]  B. Bai, J. Laukkanen, M. Kuittinen, and S. Siitonen, “Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides,” Appl. Opt. 49, 5454-5464 (2010).

[34]  X. Li, Q. Tan, B. Bai, and G. Jin, “Plasmonic leak-free focusing lens under radially polarized illumination,” J. Opt. 12, 085001 (2010).

[35]  A. Säynätjoki, B. Bai, A. Tervonen, J. Turunen, and S. Honkanen, “Enhanced vertical confinement in angled-wall slot waveguides,” Opt. Rev. 17, 181-186 (2010).

[36]  B. Bai, J. Laukkanen, A. Lehmuskero, X. Li, and J. Turunen, “Polarization-selective window-mirror effect in inductive gold grids,” Phys. Rev. B 81, 235423 (2010).

[37]  B. Bai, J. Laukkanen, A. Lehmuskero, and J. Turunen, “Simultaneously enhanced transmission and artificial optical activity in gold film perforated with chiral hole array,” Phys. Rev. B 81, 115424 (2010).

[38]  B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence”, Phys. Rev. B 80, 035407 (2009).

[39]  A. Lehmuskero, B. Bai, P. Vahimaa, and M. Kuittinen , “Wire-grid polarizers in the volume plasmon region,” Opt. Express 17, 5481-5489 (2009).

[40]  B. Bai, K. Konishi, X. Meng, P. Karvinen, A. Lehmuskero, M. Kuwata- Gonokami, Y. Svirko, and J. Turunen, “Mechanism of the large polarization rotation effect in the all-dielectric artificially chiral nanogratings,” Opt. Express 17, 688-696 (2009).

[41]  H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett., 93, 183115 (2008).

[42]  X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, “Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission,” Thin Solid Films 516, 8745-8748 (2008).

[43]  K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami*, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189-7196 (2008).

[44]  J. Tervo, I. A. Turunen, and B. Bai, “A general approach to the analysis and description of partially polarized light in rigorous grating theory,” J. Europ. Opt. Soc. Rap. Public. 3, 08004 (2008).

[45]  B. K. Canfield, S. Kujala, H. Husu, M. Kauranen, B. Bai, J. Laukkanen, M. Kuittinen, Y. Svirko, and J. Turunen, “Local-field and multipolar effects in the second-harmonic response of arrays of metal nanoparticles,” J. Nonlinear Opt. Phys. 16, 317-328 (2007).

[46]  B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: theoretical study,” Phys. Rev. A 76, 023811 (2007).

[47]  K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express 15, 9575-9583 (2007).

[48]  B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251-1255 (2007).

[49]  B. Bai and J. Turunen, “Fourier modal method for the analysis of second- harmonic generation in two-dimensionally periodic structures containing anisotropic materials,” J. Opt. Soc. Am. B 24, 1105-1112 (2007).

[50]  B. Bai, J. Tervo, and J. Turunen, “Polarization conversion in resonant magneto- optic gratings,” New J. Phys. 8, 205 (2006).

[51]  B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with hexagonal symmetry,J. Mod. Opt. 53, 1459-1483 (2006).

[52]  B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with equilateral triangular symmetry,” Opt. Commun. 262, 140-151 (2006).

[53]  B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with square symmetry,J. Opt. Soc. Am. A 23, 572-580 (2006).

[54]  B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry,J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).

[55]  B. Bai, L. Li and L. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett. 30, 2360-2362 (2005).

[56]  B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings of plane group p3,J. Mod. Opt. 52, 1619-1634 (2005).

[57]  B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with one or two reflection symmetries,J. Opt. A: Pure Appl. Opt. 7, 271-278 (2005).

[58]  B. Bai and L. Li, “Group-theoretic approach to the enhancement of the Fourier modal method for crossed gratings: C2 symmetry case,” J. Opt. Soc. Am. A 22, 654-661 (2005).

[59]  B. Bai and L. Li, “Reduction of computation time for crossed-grating problems: a group-theoretic approach,” J. Opt. Soc. Am. A 21, 1886-1894 (2004).